Prospective Detection of Tissue Ischemia During Hypothermic Circulatory Arrest Using Visible Light Spectroscopy

Summary: Visible light spectroscopy (VLS) is a real-time, quantitative monitor of tissue ischemia. We used VLS to detect tissue oxygenation in CPB.

Introduction: Reduced jugular venous saturation (SjO2) following circulatory arrest (DHCA) suggests an accumulated oxygen deficit; however, such information becomes available only after the ischemic event. Non-pulsatile visible light spectroscopy (VLS) is a minimally-invasive quantitative recent technology that allows for real-time early detection of tissue ischemia. Compared to near-infrared spectroscopy (NIRS), VLS can measure through small catheters and probes, allowing tissues such as the brain, esophagus, colon, and liver to be monitored. Our hypothesis was that cerebral perfusion during cardiac arrest would offer systemic tissue perfusion as well, and this could be monitored using a VLS probe.

Methods: We used VLS Oximetry (T-Stat™) to monitor esophageal mucosal oxygen saturation (StO2) as a marker of systemic perfusion in a neonatal piglet model of cardiopulmonary bypass (CPB) with DHCA + ACP. Continuous hemodynamic, StO2, and SvO2 data were collected. Student’s t-test was used for between group differences and significance set at p<0.05.

Results: Data are presented as mean + SD. Figure 1 Shows StO2 changes in the DHCA and DHCA+ACP groups. At baseline the 2 groups had similar StO2 however the DHCA +ACP group had significantly higher StO2 during the arrest. Figure 2 shows SvO2 was maintained after rewarming in the DHCA+ACP group.

Conclusion: This study confirmed that StO2 can be measured noninvasively using VLS. During rewarming SvO2 declined significantly in the DHCA group suggesting accumulated oxygen deficit. StO2may be a valuable monitor in the real-time detection of tissue ischemia during periods of altered circulatory flow. Trials of this probe in children are underway to validate their clinical use.

Spectros Corporation Portola Valley, CA 94028 www.spectros.com